more opportunities to share oilseed information. Inclusion of growers on event planning committees will be an integral part of the process to be certain that topics are chosen that are applicable to the area where outreach is being conducted. Canola acreage may be down in 2015, but the WOCS team is dedicated to the pursuit of answers to production questions and challenges to bring the acreage above and beyond 2014 levels.

Manipulating the \textit{AT-hook Motif Nuclear Localized (AHL)} Gene Family for Bigger Seeds with Improved Stand Establishment

\textsc{Michael M. Neff, Breanna Ervin, David Favero, Pushpa Koirala, Courtney Pierce, Kim Le, Jiwen Qiu, and Reuben Tayengwa}
\textsc{Dept. of Crop and Soil Sciences, Molecular Plant Sciences Graduate Program, WSU}

In low rainfall dryland-cropping areas of eastern Washington, stand establishment can have a major impact on yields of camelina and canola. During dry years these seeds need to be planted in deep furrows so that the developing seedling has access to water in the soil. One approach to facilitate stand establishment is to develop varieties with larger seeds and longer hypocotyls as seedlings while maintaining normal stature as adults. Unfortunately, few mechanisms have been identified that uncouple adult stature from seedling height. The Neff lab has identified a novel approach to improve stand establishment by uncoupling seedling and adult phenotypes through the manipulation of members of the \textit{AT-hook motif nuclear localized (AHL)} family. When these proteins are over-expressed, the result is seedlings with shorter hypocotyls. When the activity of multiple genes is disrupted, the result is seedlings with taller hypocotyls, demonstrating that these genes control seedling height in a redundant manner. In the \textit{Brassica Arabidopsis thaliana}, we have identified a unique allele (sob3-6) for one of these genes, \textit{SOB3/AHL29}, that over-expresses a protein with a disrupted DNA-binding domain and a normal protein/protein interaction domain. In \textit{Arabidopsis}, this mutation confers normal adult plants that produce larger seeds and seedlings with hypocotyl stems that can be more than twice as long as the wild type. The goal of this project is to enhance camelina and canola seedling emergence when they are planted deeply in low-rainfall dryland-cropping regions (generally less than 12”/year) or in wheat stubble. This can be achieved by manipulating \textit{AHL} gene family members to develop varieties that have long hypocotyls as seedlings yet maintain normal growth characteristics as adult. This project includes three major sub-aims: 1) Continue characterizing the activity of \textit{sob3-6-like} mutations in other \textit{Arabidopsis AHL} genes; 2) Generate transgenic camelina and canola plants over-expressing wild-type and mutant forms of \textit{Arabidopsis AHL} genes. 3) Identify, clone and characterize \textit{AHL} gene family members from camelina. During this funding period, the Neff Lab has used a combination of molecular, genetic, biochemical, bioinformatics and biotechnological approaches to understand the role of \textit{AHL} genes in plant growth and development. Our primary goal has been to characterize \textit{AHL} genes from \textit{Arabidopsis} and camelina, including an analysis of the evolution of this gene family. Generating transgenic \textit{Arabidopsis} over-expressing \textit{AHL} genes from complex genomes has been a powerful way to identify those genes with similar function as \textit{SOB3/AHL29} and other family members that have been characterized previously in \textit{Arabidopsis}. For example, as a part of our phylogenetic/evolutionary analysis we over-expressed a dominant-negative \textit{AHL} gene from soybean (\textit{Glycine max}) in \textit{Arabidopsis} and demonstrated a similar long-hypocotyl phenotype to those produced when expressing various dominant-negative \textit{sob3} alleles (Fig. 1). Zhao J, Favero D, Roalson E, Qiu J and Neff MM (2014) Insights into the evolution and diversification of the \textit{AT-hook motif containing nuclear localized gene family} in land plants. \textit{BMC Plant Biology} 14:266